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The Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state is a superconducting state stabilized by a large Zeeman
splitting between up- and down-spin electrons in a singlet superconductor. In the absence of disorder, the
superconducting order parameter has a periodic spatial structure, with periodicity determined by the Zeeman
splitting. Using the Bogoliubov–de Gennes approach, we investigate the spatial profiles of the order parameters
of FFLO states in a two-dimensional s-wave superconductors with nonmagnetic impurities. The FFLO state is
found to survive under moderate disorder strength, and the order-parameter structure remains approximately
periodic. The actual structure of the order-parameter depends on not only the Zeeman field but also the disorder
strength and in particular the specific disorder configuration.
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I. INTRODUCTION

In the early 1960s, Fulde and Ferrell1 and independently
Larkin and Ovchinnikov2 proposed the possibility that super-
conducting states with periodic spatial variation of the super-
conducting order parameter would become stable when a
singlet superconductor is subject to a large Zeeman splitting.
The Zeeman splitting could be due to either a strong external
magnetic field or an internal exchange field. Nowadays such
states are collectively known as the Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� state. Recently the FFLO state has re-
ceived renewed interest due to experimental evidence of its
existence in various superconductors3–27 and the �thus far
theoretical� possibility of its realization in trapped cold atom
systems,28,29 in nuclear matter, and in the core of neutron
stars.30

Soon after the original work of FFLO, it was found that
the FFLO state is very sensitive to the presence of impurities
and eventually suppressed when the disorder strength
reaches certain critical value.31–34 Physically, this is because
the Cooper pairs in the FFLO state carry finite momenta �and
the periodicity of the spatial structure is tied to the corre-
sponding wave vectors�; impurities cause scattering between
states with different momenta and thus tend to destroy the
corresponding spatial structure. In these earlier studies, how-
ever, the effects of impurities are taken into account by
disorder-averaging various relevant physical quantities �such
as pairing susceptibility�, after such averaging translation
symmetry is restored and the superconducting order param-
eter is again assumed to have a periodic structure. On the
other hand in a specific realization of disorder, the system
will adjust itself according to the impurity configuration,35

and its order-parameter structure will no longer be exactly
periodic. We can thus expect �possibly quite large� spatial
fluctuations of the order parameter, which are neglected in
these treatments. In fact, such spatial fluctuations have been
observed previously in strongly disordered superconductors
in the absence of Zeeman splitting.36–40 Thus a more com-
plete understanding of the FFLO state requires a more care-
ful examination of the disorder induced order-parameter
fluctuations. A related conceptual issue is how to distinguish
the FFLO state from other competing states �including the

Bardeen-Cooper-Schrieffer or BCS state� in the presence of
impurities, where momentum is no longer a good quantum
number.

In this paper, we present a microscopic numerical study of
a disordered two-dimensional �2D� s-wave superconductor
subject to a Zeeman field. We use a negative U Hubbard
model and treat it within the Hartree-Fock �HF� and
Bogoliubov–de Gennes �BdG� frameworks. We solve for the
order-parameter configuration specific to each disorder con-
figuration and develop empirical criteria to distinguish
among the BCS, FFLO, and normal phases. A phase diagram
based on such criteria is obtained.

This paper is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian and present the mean-field treat-
ment of our model. The numerical results of solutions of the
order parameters are presented and analyzed in Sec. III.
Some concluding remarks are offered in Sec. IV. Throughout
this paper we only consider zero temperature, although gen-
eralization to finite temperature is straightforward.

II. MODEL AND MEAN-FIELD TREATMENT

We begin with the disordered s-wave superconductor on a
2D square lattice of finite size Nx�Ny, described by the
negative U Hubbard model,

H = − t �
�i,j��

ci�
† cj� + �

i�
�wi + �h − ��ci�

† ci�

− U�
i
�n̂i↑ −

1

2
��n̂i↓ −

1

2
� , �1�

where t is the nearest-neighbor hopping that will be set t
=1 from now on, �= �1 is the spin index, wi is the on-site
random potential which is independently distributed from
−W /2 to W /2 uniformly, h is the Zeeman field, U�0 is the
attractive interaction, n̂i�=ci�

† ci� is the number operator, and
i= �xi ,yi� is the site position. Since the system size is finite,
periodic boundary condition is imposed on the lattice. It is
interesting to note that Hamiltonian �1� is symmetric under
the particle-hole transformation,
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ci� = �− 1�xi+yic̃i�
† , �2�

in combination with the transformations �→−�, h→−h,
and wi→−wi. This symmetry is respected by the mean-field
approximation that will be discussed below, and it is a very
useful property that we use to test the accuracy of our nu-
merical solutions.

Within the HF-BdG approximation, the Hamiltonian re-
duces to a quadratic form,

Hm = �
ij�

�Hij + �h�ij�ci�
† cj� + �

i
��ici↑

† ci↓
† + �i

�ci↓ci↑� ,

�3�

where Hij=−t�i�1,j+ �wi−�−U�ni�̄��ij, ni�= �ci�
† ci�� is the

particle density, �ni�=ni�−1 /2, �̄=−�, and �i=−U�ci↓ci↑� is
the order parameter. To diagonalize this HF-BdG �or mean-
field� Hamiltonian �3�, we employ the Bogoliubov transfor-
mation,

ci� = �
	

�ui�
	 
	 − �vi�

	�
	
†� , �4�

where 
	 and 
	
† are the quasiparticle operators. The ampli-

tudes of the quasiparticles �ui�
	 ,vi�

	 � satisfy the BdG equa-
tions,

�
j
�Hij� + h�ij �ij

�ji
� − Hij�̄

� + h�ij
��uj�

	

vj�̄
	 � = E	�ui�

	

vi�̄
	 � , �5�

where the eigenvalues E	�0. The self-consistency condi-
tions are consequently expressed as

�i = − U�
	

�ui↑
	 vi↓

	�f�E	� − ui↓
	 vi↑

	�f�− E	�	 , �6a�

ni� = �
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ui�
	 
2f�E	� + 
vi�

	 
2f�− E	�	 , �6b�

where f�E� is the Fermi distribution function. Self-consistent
solutions of �i and ni� are achieved by iteration of Eq. �5�
from a randomly initialized configuration. In case different
solutions are obtained from different initial configurations,
we choose the energetically favored one by comparing their
corresponding energies. The energy of the system in the su-
perconducting state is evaluated to be

�H� = �
	

E	� f�E	� − �
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vi�
	 
2�

+
1

U
�

i

�i
2 + U�

i
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4
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At zero temperature the Fermi function f�E� reduces to a step
function.

III. NUMERICAL RESULTS

In our numerical calculations, we take the chemical po-
tential �=−0.8 to avoid the perfect nesting of the Fermi
surface at half-filling ��=0� and a relatively strong pairing
interaction strength U=2.5 so that the FFLO state can be

realized in a relative small system size. We start by consid-
ering the disorder-free limit of W=0. In this case we can take
advantage of the translation symmetry and solve the problem
in the thermodynamic limit. We find BCS order parameter
�=0.365 for h=0, and the FFLO state is stable for hc1�h
�hc2 with hc10.27 and hc20.66. This field range is big-
ger than that of a 2D weak-coupling s-wave superconductor
with circular Fermi surface.41 We believe the discrepancy is
due to the fact that our pairing strength is not weak and
lattice effects that result in a noncircular Fermi surface with
some nesting that favors the FFLO state. The system turns
normal ��=0� for h�hc2. Throughout the range hc1�h
�hc2, the FFLO order parameter takes a one-dimensional
�1D� structure,42 with a period that varies continuously with
h.

In the presence of W, we will study systems with finite
size of rectangular shape, which is fixed to be Nx=32 and
Ny =16 for the rest of the paper. Periodic boundary condition
is imposed in both directions. Here, we make the lattice ge-
ometry to be rectangular instead of square because this al-
lows us to extend the size of one of the directions �x direc-
tion� at the expense of the other, and the 1D structure of the
FFLO state is not very sensitive to the size of the shorter
direction. Having a finite system size restricts the periodicity
of the FFLO order parameter. At a given Zeeman field, if the
lattice size is not commensurate with the corresponding pe-
riod, solutions of the FFLO states will have to be modified to
be commensurate with system size, which results in some
energy cost.

In the absence of disorder �W=0�, FFLO state is obtained
at this system size in the range from hc1=0.27 to hc2=0.55;
the �slightly� reduced range reflects the finite-size effect dis-
cussed above. The order parameters �i at several Zeeman
fields are plotted in the left column of Fig. 1, while the right
column are the maps of the corresponding order parameters
in Fourier space �k,

�k =
1

NxNy
�

i
�ie

−ik·xi. �8�

Here, we see that the order parameter is of nearly cosine
form with period of 32 along x axis at h=0.27 �Fig. 1�b�	.
When the Zeeman field reaches h=0.35 �Fig. 1�c�	, the pe-
riod reduces to 16 �so that two periods are accommodated�,
and it remains the same until the system becomes normal at
h=0.56 �Fig. 1�d�	. In the cases of the FFLO state, we find
two dominant Fourier components representing the corre-
sponding sinodal structure of the order parameter.

To obtain the physical picture of the s-wave supercon-
ductors subject to both disorder and Zeeman field, we calcu-
late the order parameters � with h=0.24–0.70 and W
=0.0–4.0. The disorder configurations are realized over ten
different samples. For comparison, we also calculate the or-
der parameter �0 of each disorder configurations in the ab-
sence of Zeeman field, where Anderson’s theorem guarantees
a BCS state within mean-field theory. In Figs. 2 and 3, we
give some examples of the order-parameter configurations
with various Zeeman fields under weak and strong disorder
strengths �W=1.2 and 4.0, respectively�. Scrutinizing the
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spatial profiles of the order parameters individually leads to
the following observations.

First of all, we find considerable sample specific spatial
fluctuation in the order parameter in the BCS state �when h
=0; see Figs. 2�a� and 3�a�	. This is consistent with previous
studies.37,40 On the other hand the order parameter � has a
single �positive� sign despite the fluctuations, as a result of
which the Fourier transform of � peaks sharply at k=0; this

is a hallmark of the BCS state. When h is turned on, there
may be some sign changes in �; but as long as �k=0 remains
the dominant Fourier component, we can still identify the
state as BCS, and a typical example is Fig. 3�b�. Due to the
presence of a gap, the BCS state is unaffected by the Zeeman
field for a finite range of h. To determine the phase boundary
across which the BCS state becomes unstable and yields to
either the FFLO or normal state, we calculate the overlap

FIG. 1. �Color online� Order parameters at various h in the absence of disorder �W=0� in both real space �left column� and momentum
space �right column�: �a� h=0.0, BCS state; �b� h=0.27, FFLO state with one period accommodated within the finite system size; �c� h
=0.35, FFLO state with two periods accommodated within the finite system size; and �d� h=0.56, normal state. Here, U=2.5, �=−0.8,
Nx=32, and Ny =16.

FULDE-FERRELL-LARKIN-OVCHINNIKOV STATE IN… PHYSICAL REVIEW B 78, 054501 �2008�

054501-3



between the order parameters in the presence and absence of
Zeeman field,

A = 
��0
��
/��0�2, �9�

where ���=��� 
�� is the norm of the order parameter. The
reason we focus on this quantity is that the overlap between
the order parameters of BCS state and either FFLO state or
normal state is exactly zero for clean system because the
FFLO order parameter is oscillatory with zero mean, and the

normal state has �=0. We expect A to decrease rapidly
across the phase boundary where the BCS state destabilizes
and becomes almost zero in the FFLO and normal states with
disorder. Numerical calculations of the sample averaged A
are displayed in Fig. 4. There we can see a fairly clear phase
boundary separating the BCS and non-BCS states. The
boundary is sharper in the weak disorder regime while be-
comes somewhat fuzzy with increasing disorder strength due
to larger sample-to-sample fluctuations.

FIG. 2. �Color online� The same as Fig. 1 except W=1.2 and �a� h=0.0, �b� h=0.32, A=0.299, B=−0.601, �c� h=0.36, A=0.019,
B=−0.447, and �d� h=0.40, A=0.012, B=−0.548. See the text for the definitions of A and B.
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We now turn to the more interesting FFLO state in the
presence of disorder, examples of which are shown in Figs.
2�b�–2�d�. Just like the disorder-free case �W=0�, the order
parameters are oscillatory in these cases. However unlike the
cases without disorder, the order parameters are no longer
exactly periodic and exhibit considerable sample specific
spatial fluctuations similar to the BCS case with disorder.
However the characteristic order-parameter momenta are

clearly visible in the Fourier space, as manifested by well-
defined peaks in �k away from the origin k=0. Unlike the
disorder-free cases, however, these peaks have finite width,
reflecting the absence of exact periodicity. We also find that
disorder appears to influence the structure of the order pa-
rameter, such as in Figs. 2�c� and 2�d�, where the order-
parameters form 2D oscillatory structures while, with the
same Zeeman field, only 1D structures appear in the absence

FIG. 3. �Color online� The same as Fig. 1 except W=4.0 and �a� h=0.0, �b� h=0.34, A=0.411, B=0.511, �c� h=0.42, A=0.027,
B=−0.195, and �d� h=0.64, A=0.001, B=−0.099. See the text for the definitions of A and B.
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of disorder. This is visible in real space but becomes particu-
larly obvious in Fourier space, where �k has four instead of
two peaks. We thus find that the order-parameter structure
depends not only on the Zeeman field but also on disorder
strength and configuration.

Such disordered FFLO states are found at relatively weak
disorder up to W2.0. For stronger disorder a different pat-
tern emerges as h increases. In this case the BCS state yields
to a state in which the order parameter is zero or nearly zero
almost everywhere, but there can be isolated regions �or is-
lands� within which � is nonzero and quite random. In Fou-
rier space �k also shows a random form with no obvious
structure, notably with �k=00. Examples of such states are
Figs. 3�c� and 3�d�. This pattern is similar to what happens
when increasing the disorder to very strong strength at h=0,
where previous work found that the order parameter is de-
stroyed everywhere except in a few superconducting
islands.37,40 The only difference here is that the order param-
eter tends to oscillate in sign in the presence of a Zeeman
field. In Fourier space the order-parameter shows random
diffuse pattern with no clear structure in such states. Here we
identify such states as the normal state, as in previous
work.37,40 This is because while the order parameter is non-
zero in isolated islands, quantum fluctuation will easily de-
stroy the phase coherence between different islands, and as a
result there is no phase coherence and stiffness in the ther-
modynamic limit.

It is clear from the discussions above that these three
competing states �BCS, FFLO, and normal� are most easily
distinguished from the order-parameter structures in Fourier
space. To quantify their differences we introduce the follow-
ing quantity:

B = �
�k
max/��k� , �10�

where �= +1 if the maximum value of 
�k
 �denoted by

�k
max� is at k=0 and �=−1 otherwise and ��k�=��k
�k
2.
In the absence of disorder, B=1 for the BCS state and B=
−1 /�2 for the FFLO state with 1D cosine structure �with

only two Fourier components; the magnitude of B reduces
somewhat when more Fourier components are present�. For
the normal state, B=0. In the presence of disorder, �k is
dominated by the k=0 component in the BCS state and by
several components with k�0 in the FFLO state; we thus
expect B to be positive for the BCS state and negative for the
FFLO state. For the normal state on the other hand, there will
be no dominant component in �k; as a result B is nearly zero
for that case. To illustrate this identification we have listed
the values of B for the individual cases in Figs. 2 and 3.

The disorder averaged B value is plotted in Fig. 5. Using
the identification above, we can clearly see these three
phases and identify three phase boundaries: BCS to FFLO,
BCS to normal, and FFLO to normal. The first two bound-
aries agree with the BCS to non-BCS boundary obtained
from Fig. 4. By combining data in these two figures as well
as our knowledge of the positions of hc1 and hc2 in the ab-
sence of disorder, we obtain a phase diagram of the system
as presented in Fig. 6.

IV. CONCLUDING REMARKS

In this paper we have presented a microscopic study
�based on mean-field theory� of a 2D s-wave superconductor
subject to both disorder potential and a Zeeman field and
showed that the FFLO state can survive moderate disorder
strength. Our most important results are presented in the
form of a zero-temperature disorder-Zeeman field phase dia-
gram �Fig. 6�, as well as the detailed analysis of the super-
conducting order parameters in different phases that leads to
the determination of this phase diagram �Figs. 4 and 5�. We
should note that within mean-field theory we always obtain a
BCS superconducting solution for zero Zeeman field �h=0�;
however quantum fluctuations that are left out in our study
get enhanced with increasing disorder strength W and will
eventually drive the system to an Anderson insulating phase.

FIG. 4. �Color online� The map of the overlap between ��h� and
�0�h=0�, A= 
��0 
��
 / ��0�2, as a function of Zeeman field h and
disorder strength W. We average over ten samples of different dis-
order realizations for a given W. For the pure BCS state, the order
parameter is unaffected by the Zeeman field and gives A=1. For
non-BCS state, A will decrease to zero rapidly. A rough boundary
between the BCS state and non-BCS state is depicted by the �red�
dashed line.

FIG. 5. �Color online� The map of B=�
�k
max / ��k� as a func-
tion of Zeeman field h and disorder strength W, where �k is the
Fourier transform of �i and � takes the value of 1 when the maxi-
mum value 
�k
max is at k=0 and of −1 otherwise. The disorder
realizations are the same as in Fig. 4. In the absence of disorder, this
quantity equals 1 for the BCS state, −1 /�2 for the FFLO state of 1D
structure, while −1 /2 for 2D structure with simple cosine functions
for the order parameter, and zero for the normal state. The �red�
dashed lines sketch the �rough� phase boundaries among these three
phases with disorder.
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Thus the BCS-normal phase boundary will eventually bend
left as W increases and intersect the h=0 axis. Since we do
not expect metallic behavior in 2D, the entire normal phase
is expected to be an Anderson insulator. We also note that the
superconducting islands we found in the “normal” phase
�which is really insulating� have also been observed in nu-
merical studies of superconductor-insulator transition in dis-
ordered superconductors.43

Our results are in qualitative agreement with previous
studies31,32 which suggested that the FFLO state can survive
as long as the electron-scattering rate is comparable or
smaller than the BCS gap. In our study we find the critical
disorder strength Wc2.0; this corresponds to a scattering
rate �within effective-mass approximation� 1 /c
Wc

2 / �24�t�0.167 �we set �=1�, which is indeed compa-
rable the BCS gap �=0.365. More importantly, however, our
study reveals that the FFLO state is characterized by ap-
proximate instead of exact periodic variation of the super-
conducting order parameter in real space with zero average;
this is manifested in Fourier space by peaks in the order
parameter at nonzero wave vectors with finite width.

In an earlier work,44 one of us �along with D. F. Agter-
berg� proposed to use the Josephson effect between a BCS
superconductor and an FFLO superconductor to identify the
latter and measure its order-parameter structure. It was
shown that44 there is no Josephson effect in this case when

there is no magnetic flux going through the junction because
there is no k=0 component of the order parameter in the
FFLO state. This conclusion remains to be true in the pres-
ence of disorder. Reference 44 further predicts that the Jo-
sephson effect can be recovered when there is an appropriate
amount of magnetic flux going through the junction, which
gives rise to a momentum �or wave vector� to the Josephson
hopping matrix element that matches momentum of one of
the Fourier components of the FFLO order parameter; this
allows for a direct measurement of the order-parameter mo-
menta in the absence of disorder. In the presence of disorder
this method should still work as long as the disorder strength
is sufficiently weak and the size of the junction is relatively
small. However for stronger disorder and/or very large junc-
tion this will no longer work because the weight carried by a
single Fourier component of the order parameter will be neg-
ligible in the disordered FFLO state.

It would be highly desirable to go beyond mean-field
theory and take into account effects of quantum fluctuations
of the order parameter. This is perhaps most easily done in
one- or quasi-one-dimensional systems, where the powerful
method based on bosonization has already yielded a number
of exact results in the absence of disorder.45 Disorder can be
treated using the formalism advanced by Giamarchi and
Schulz.46 We note that in two- or three-dimensional systems,
initial attempts to go beyond mean-field theory have been
made by treating fluctuations within random-phase approxi-
mation �RPA� �Ref. 47� and fluctuation exchange48 approxi-
mations.

Among existing candidates of FFLO superconductors,
CeCoIn5 appears to be the most promising.13,14 This is a
d-wave superconductor. The d-wave FFLO state is different
from s-wave FFLO state in a number of important
ways.34,49,50 It would thus be very interesting to use the
methods of the current paper to study d-wave supercondutors
in the presence of both disorder and Zeeman field and com-
pare with existing theory.
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